Sie benötigen Hilfe? Bitte kontaktieren Sie unser Support Team von 9.00 - 17.00 via support.pressclub@bmwgroup.com.

PressClub Deutschland · Artikel.

Smarte Wartung mittels Künstlicher Intelligenz

+++ Predictive Maintenance im BMW Group Werk Regensburg – KI-gestütztes System überwacht Fördertechnik in der Montage +++ Integriertes, lernendes Wartungssystem erkennt frühzeitig mögliche Störungen und vermeidet so über 500 Störminuten pro Jahr in der Fahrzeugmontage +++

Regensburg
·
Technologie
·
BMW Group Standorte
·
Produktionswerke
·
Produktion, Recycling
 

Pressekontakt.

Saskia Graser
BMW Group

Tel: +49-941-770-2014

E-Mail senden

Author.

Saskia Graser
BMW Group

This article in other PressClubs

+++ Predictive Maintenance im BMW Group Werk Regensburg – KI-gestütztes System überwacht Fördertechnik in der Montage +++ Integriertes, lernendes Wartungssystem erkennt frühzeitig mögliche Störungen und vermeidet so über 500 Störminuten pro Jahr in der Fahrzeugmontage +++

Regensburg. Ungeplante Stillstände gar nicht erst aufkommen zu lassen. Das ist Ziel eines smarten Analysesystems in der Montage des BMW Group Werks Regensburg. Predictive Maintenance bedeutet vorausschauende oder vorbeugende Instandhaltung – und genau das bietet das smarte Überwachungssystem: Durch datengesteuerte Analysen der Fördertechnikanlagen lassen sich frühzeitig mögliche Störungen erkennen und verhindern – und so wiederum lässt sich ein optimaler Produktionsfluss der Fahrzeuge aufrecht erhalten. Durchschnittlich verhindert das Künstliche Intelligenz (KI)-gestützte System allein in der Regensburger Fahrzeugmontage rund 500 Störminuten pro Jahr.

Dank Datenanalyse schneller handeln und bei potenziellen Störungen vorbeugend agieren

In der Montage des BMW Group Werks Regensburg laufen die Fahrzeuge, zumeist in mobilen Gehängen befestigt oder auf Schubplattenanlagen, wie an einer Kette durch die Produktionshallen. Technische Störungen an den hochmodernen Förderanlagen können zum Stillstand der Montagebänder führen. Dies wiederum würde einen erhöhten Instandhaltungsaufwand – und damit Kosten bedeuten. Um dem vorzubeugen, hat das Innovationsteam des BMW Group Werks Regensburg ein System entwickelt, mit dem sich potenzielle technische Defekte frühzeitig erkennen – und so Produktionsverluste verhindern lassen. Davon betroffene Förderelemente können aus der Montagelinie ausgeschleust werden und abseits der Produktion repariert werden. Der Vorteil: Das Überwachungssystem benötigt keine zusätzliche Sensorik oder Hardware aus, sondern es wertet vorhandene Daten aus den verbauten Komponenten und der Steuerung der Förderelemente aus. Bei Anomalien schlägt es gegebenenfalls Alarm.

Ein Beispiel: Die Transportgehänge, mit denen Fahrzeuge durch die Montage transportiert werden, senden vielfältige Daten an die Gehängesteuerung. Diese Daten werden über die Gehänge- und Anlagensteuerung an eine BMW Group eigene Predictive Maintenance-Cloud-Plattform gesendet. Hier beginnt die Analyse: Der Algorithmus sucht permanent nach Auffälligkeiten wie beispielsweise Schwankungen in der Stromaufnahme, Auffälligkeiten bei den Förderbewegungen oder nicht ausreichend lesbare Barcodes, die eine Störung auslösen könnten. Im Fall von Anomalien erhält die Instandhaltungs-Leitzentrale eine Warnmeldung und weist diese dem diensthabenden Instandhalter zu. „In unserer Leitzentrale laufen rund um die Uhr die Überwachungsmonitore“, erklärt Projektleiter Oliver Mrasek. „Dadurch können wir bei einer Störmeldung schnell reagieren und das betroffene Gefährt aus dem Takt nehmen.“

Die Umsetzung: KI-gestützt, standardisiert und kostengünstig

Predictive Maintenance ist keine Individual-Lösung, betont Mrasek. Das System wurde – in Zusammenarbeit mit dem zentralen Shopfloor Management der BMW Group und anderen Werksstandorten – standardisiert, um einen Rollout an den Werkstandorten der BMW Group weltweit schnell und einfach durchzuführen. Und es ist kostengünstig. „Da wir keine zusätzlichen Sensoren benötigen, schlagen nur die Kosten für Speicher- und Rechenkapazität zu Buche.“

In das System wurden auch eigens entwickelte Machine-Learning Modelle implementiert. Um die Ergebnisse dieser Modelle zu visualisieren, nutzt das System so genannte Heatmaps. Mit diesen werden Auffälligkeiten durch Farbcodes dargestellt. „So können wir verschiedene Störbilder an verschiedenen Komponenten abbilden und ganz gezielt reagieren,“ erläutert Mrasek.

Mittels Erkenntnissen aus der Praxis werden die Algorithmen kontinuierlich verbessert und weiterentwickelt. Aktuell ist das Team dabei, weitere Anlagen anzubinden, das System zu optimieren und Handlungsempfehlungen in die Störmeldungen zu integrieren. So kann beispielsweise bereits mit der Störmeldung der Hinweis erfolgen, welche vergleichbaren Probleme es an einer Anlage gab. Das erleichtert den Instandhaltern die Fehlersuche, zum Beispiel wenn ein Laufrad am Fördergehänge defekt ist. „Wenn wir Predictive Maintenance optimal umsetzen, spart das nicht nur Geld und wir können unsere Fahrzeuge in der geplanten Stückzahl pünktlich ausliefern. Es spart innerhalb der Produktion auch enorm viel Stress“, erklärt Deniz Ince, Data Scientist des Teams.

Das nächste Ziel: Planbarkeit. Und zwei Patente.

Seit sechs Jahren arbeiten Mrasek und seine Kollegen an der datengesteuerten Überwachung der Fördertechnik. Heute werden bereits rund 80 Prozent der Hauptmontagelinien damit überwacht. „Natürlich lässt sich nicht jede Störung vorab erkennen oder verhindern. Aber wir vermeiden derzeit allein in der Fahrzeugmontage mindestens 500 Minuten im Jahr, an denen die Bänder stehen würden“, erzählt er. Was das bedeutet, lässt sich leicht hochrechnen. Denn nahezu jede Minute – alle 57 Sekunden – läuft im BMW Group Werk Regensburg ein Fahrzeug vom Montageband. Schon heute wird das System auch an Förderanlagen an den Werksstandorten Dingolfing, Leipzig und Berlin genutzt.

Auch die Möglichkeiten der künstlichen Intelligenz sollen noch besser genutzt werden. Das System soll lernen einzuschätzen, wie viel Restlaufzeit vom Erkennen der Störung bis zum potenziellen Stillstand verbleibt. Damit könnten die Instandhalter entscheiden, wie zeitnah sie die Wartung durchführen müssen und gegebenenfalls Prioritäten setzen. Oliver Mrasek sieht darüber hinaus weiteres Potenzial an anderen Stellen des Werks: „Wir testen aktuell, ob wir das System auch für Befüllanlagen nutzen können, die unsere Fahrzeuge zum Beispiel mit Bremsflüssigkeit und Kühlwasser betanken.“

Obwohl es bereits viele Möglichkeiten zur vorbeugenden Wartung von Anlagen gibt, ist das integrierte und lernende Regensburger System bislang einzigartig. Deshalb ist die Kompatibilität mit Predictive Maintenance bereits in den Ausschreibungen für neue Fördertechnik enthalten. Auch deren Hersteller loben das System, von dessen Auswertungen sie ebenfalls profitieren. Die BMW Group hat auf ihre Inhouse-Entwicklung bereits zwei Patente angemeldet.

BMW Group Unternehmenskommunikation
Dominik Hämmerl, Kommunikation Regensburg und Wackersdorf
Mobil: +49 151 6060 3889, E-Mail: Dominik.Haemmerl@bmw.de

Saskia Graser, Leitung Kommunikation Regensburg und Wackersdorf
Mobil: +49 151 6060 2014, E-Mail: Saskia.Graser@bmw.de

Internet: www.press.bmwgroup.com

E-mail: presse@bmw.de

   

Die BMW Group Werke Regensburg und Wackersdorf

Die BMW Group versteht sich seit Jahrzehnten als Benchmark in Sachen Produktionstechnologie und operativer Exzellenz im Fahrzeugbau – auch an den Standorten Regensburg und Wackersdorf. 
Das BMW Group Fahrzeugwerk in Regensburg besteht seit 1986 und ist einer von über 30 Produktionsstandorten der BMW Group weltweit. Arbeitstäglich laufen im Werk Regensburg insgesamt bis zu 1.000 Fahrzeuge der Modelle BMW 1er, BMW X1 sowie BMW X2 vom Band.
Sie gehen an Kunden auf der ganzen Welt. Verschiedene Antriebsformen werden flexibel auf einer einzigen Produktionslinie gefertigt – vom Fahrzeug mit Verbrennungsmotor über Fahrzeuge mit Plug-in-Hybrid bis hin zu vollelektrischen Modellen.

Die Hochvoltbatterien für die in Regensburg gefertigten Elektromodelle entstehen ebenfalls vor Ort, in unmittelbarer Nachbarschaft zum Fahrzeugwerk. Sie werden in der E-Komponentenfertigung, am 2021 eröffneten Standort in der Leibnizstraße, montiert.
Ebenso zum Standort Regensburg gehört der BMW Innovationspark Wackersdorf. Das 55 Hektar große Gelände wurde in den 1980er Jahren gebaut und war ursprünglich für eine atomare Wiederaufarbeitungsanlage vorgesehen. Die BMW Group hat dort ihre Cockpitfertigung angesiedelt, ebenso wie die Teileversorgung von Überseewerken. Im Innovationspark Wackersdorf sind neben BMW als größtem Arbeitgeber weitere Firmen ansässig. Insgesamt arbeiten dort rund 2.500 Beschäftigte.

Die BMW Group Stammbelegschaft an den ostbayerischen Standorten Regensburg und Wackersdorf umfasst rund 9.000 Mitarbeiter, darunter mehr als 300 Auszubildende.

www.bmwgroup-werke.com/regensburg/de.html

Dokumente als Download.

Artikel Media Daten

My.PressClub Login

PressClub Information

RSS NEWS FEED.

zur Website

Mit dem PressClub RSS-Service können Sie Publikationen auch als Nachrichtenfeed empfangen. Wählen Sie nach Bedarf aus verschiedenen Themen-Feeds oder verwenden Sie den Feed mit den neuesten Artikeln, um stets auf dem Laufenden zu bleiben.

CO2-Emissionen & Verbrauch.

Die Angaben zu Kraftstoffverbrauch, CO2-Emissionen, Stromverbrauch und Reichweite werden nach dem vorgeschriebenen Messverfahren VO (EU) 2007/715 in der jeweils geltenden Fassung ermittelt. Sie beziehen sich auf Fahrzeuge auf dem Automobilmarkt in Deutschland. Bei Spannbreiten berücksichtigen die Angaben im NEFZ Unterschiede in der gewählten Rad- und Reifengröße, im WLTP die Auswirkungen jeglicher Sonderausstattung.

Alle Angaben sind bereits auf Basis des neuen WLTP-Testzyklus ermittelt. Aufgeführte NEFZ-Werte wurden gegebenenfalls auf das NEFZ-Messverfahren zurückgerechnet. Für die Bemessung von Steuern und anderen fahrzeugbezogenen Abgaben, die (auch) auf den CO2-Ausstoß abstellen, sowie gegebenenfalls für die Zwecke von fahrzeugspezifischen Förderungen werden WLTP-Werte zugrunde gelegt. Weitere Informationen sind hier www.bmw.de/wltp und hier www.dat.de/co2/ zu finden.

Neueste Daten & Fakten.

Technische Daten BMW 1er 116, gültig ab 11/2024.
Tue Oct 29 15:21:07 CET 2024
1er
Das BMW 2er Gran Coupé - Preisliste für Deutschland.
Thu Oct 17 09:34:00 CEST 2024
F74
Gran Coupé
Der BMW X7 - Preisliste für Deutschland.
Wed Oct 16 15:13:00 CEST 2024
G07
Preise
Die BMW 5er Limousine - Preisliste für Deutschland.
Wed Oct 16 12:11:00 CEST 2024
G60
5er
Alle anzeigen

Suchoptionen anpassen.

Pressemeldung
Pressemappe
Reden
Daten & Fakten
Spanisch
  • Sprache Dateianhang
  • Arabisch
  • Chinesisch (traditionell)
  • Chinesisch (vereinfacht)
  • Deutsch
  • Englisch
  • Französisch
  • Italienisch
  • Japanisch
  • Koreanisch
  • Mehrsprachig
  • Russisch
  • Spanisch
Updates
Top-Topic
Jetzt suchen
Zurücksetzen
 
So.
Mo.
Di.
Mi.
Do.
Fr.
Sa.
 
Login